Department of Electrical & Electronic Engineering
Imperial College London

EE2 Circuits & Systems

Lab 4 — Sequential circuits in SystemVerilog

Learning Outcomes

Lab 4 teaches you:

how to design different types of counters and timers;

how to predict the maximum operating clock frequency of your clocked circuits;

how to design some useful timing and counting components for later Laboratory
Sessions

how to generate pseudo-random binary sequence using a linear feedback shift
register.

Reminder of Steps to create a design for DE10-Lite FPGA board

1.

NoukswnN

o %

Create a project using Project Wizard and name convention labXtaskY and top-level
SystemVerilog file as labXtaskY.v.

Specify the Device used as: 10M50DAF484C7G.

Edit the Quartus Setting File (.gsf) and insert pin assignment file pin_assignment.txt.
Create or edit the different SystemVerilog specification files (.sv).

Set top-level entity to be labXtaskY.v with Project -> Set Top-Level Entity

Add other components (.sv) to the project with Project -> Add/Remove Files
Specify timing constraints in design constraint file (.sdc) file (e.g. clock frequency) —
not strictly required.

Compile and synthesize the design.

Program the DE10-Lite with the bit-stream file (.sof).

Lab 4 — Sequential circuits (v2.4 — 10 Nov 2025) 1

Task 1: Testing a binary counter

Download the solution: lab4taskl_sol.sof (zipped) from the course webpage and see what
you are trying to achieve.

Step 1: Create the project for a 4-bit counter

Create in your work directory a folder named lab4 and in that, another folder task1.
Click file>New Project Wizard, and create project lab4taskl and top level file
lab4taskl. Then click Finish. (Quartus create a database structure in the folder:
<home>/lab4/taskl with a project named lab4task1.

Click File > New ... and select SystemVerilog as the new file. An edit window will
appear. Create the SystemVerilog file: “counter.sv” which contains a parameterizable
binary counter in SystemVerilog as shown below.

“timescale 1ns / 10@ps

module counter #(
parameter WIDTH = 4

) (
input logic clk,
input logic rst,
input 0gic en,
output logic [WIDTH-1:0] count

);

always_ff @ (posedge clk)
if (rst) count <= {WIDTH{1'b0@}};
else count <= count + {{WIDTH-1{1'b0}}, en};
endmodule

Step 2: Enter the SystemVerilog specification of a binary counter

Enter the SystemVerilog module as shown above. This counter specification has a
default bit width of 8 (i.e. 8-bit counter). However, the counter will work for ANY
number of bits by changing the parameter WIDTH. Exactly how this works is
explained in Lecture 6.

The line ‘timescale 1ns / 100ps tells the system to use 1 ns as the unit time step with
a time resolution of 100ps. (Note first character is special — it is NOT the apostrophe
‘ but the ‘backwards apostrophe ".)

Make sure that you fully understand this SystemVerilog code before proceeding to
the next step. Save the file as counter.sv. (I recommend that you use module name
as the file name to avoid confusion.)

Step 3: Create the top-level design to test the counter

Create the top-level design file: lab4taskl.sv that corresponds to the circuit shown
below. Note that the clock of the counter is driven by the momentary switch KEY[1]
and the reset input to the counter is driven by KEY[O]. Both keys are LOW ACTIVE,
meaning that the signal value is ‘0’ when the key is PRESSED. (This is a good test to
see that you can create a complete design and implement on the DE10 board. Refer
to the steps on page 1 to produce a working bit-stream file.)

Lab 4 — Sequential circuits (v2.4 — 10 Nov 2025) 2

counter_4

1" ———— enable S 4
‘I_—C reset % HEXO
KEY[O] 3
o
—|—_C> clock Push button keys are low active, i.e. KEY[0] and KEY([1]
KEY[1] are normally high and go low when pressed.

module lab4dtaskl
input Lot .
output log . HEX@

E
ogic [3:0] count;

er CTR (.clk(~KEY[1]),
.rst(~KEY[0]),
.en(1'bl),
.count(count));
(.out (HEXQ),
.in(count));

endmodule

e Why pressing the reset key does not reset the counter? What else do you need to do
to perform a reset? What do you need to change in the counter.sv module so that
the counter is reset to zero the moment that KEY[O] is pressed?

Now that you have verified your counter is working, add counter.sv to your mylib folder
for future use.

Lab 4 — Sequential circuits (v2.4 — 10 Nov 2025) 3

Task 2: 16-bit counter clocked by 50MHz system clock

In this part of the experiment, you will implement a 16-bit counter and display its count value
as a binary code decimal (BCD) number on the 7-segment displays. You will also learn how to
find the maximum clock frequency at which your design will work correctly.

Step 1: Create a new project lab4task2, and make sure that you already have hextoZ7seg.sv,
counter.sv and pin_assignment.txt stored in your mylib folder at your home folder for E2CAS.
Download from the course webpage the component bin2bcd_16.sv, a module | have
designed to convert a 16-bit binary number to 5 BCD digits. Make sure that this is stored in
your mylib folder. This is the repository for all the common components/modules that you
have designed and will be reused later.

Step 2: Selecting the FPGA Device — Click Assignments > Device.... and select the correct
MAX10 FPGA: 10M50DAF484C7G.

Step 3: Pin Assignment — Open the lab4task2.qsf file (Quartus setting file). Examine its
content to make sure that the device and top-level entity is correctly specified. You will find
that no pins are being assigned yet. Insert into this file all the pin assignments information.
The easiest way to do this is to go the bottom of the file, click on: Edit > Insert file .. then
select <home>/mylib/pin_assignment.txt (you should have downloaded this file from the
Experiment webpage and place this in mylib). Note that you are currently not using all the
pins assigned in the pin_assignment.txt file. Don’t worry — all unused pins are ignored. This
will produce a few more warning messages but full compilation can still go ahead without
error.

Step 4: Create a top-level module lab4task2.sv in SystemVerilog to specify the circuit shown
below. You should be able to this if you have mastered Task 1 well, but with one exception.
The counter.sv module has a default bit-width of 4. Now we need a 16-bit counter. To make
the counter 16-bit, one can instantiate the component with WIDTH parameter set to 16 as

shown here:
CTR16 bin2bcd_16
h 7 HEXO
KEvio) 5| BCD0 ™74 B T e counter #(.WIDTH(16)) CTR16 (
2 hexto?
_I__Oreset 5 % 1 BCD1 7 exto7see 7 . clk(MAX10_CLK1_50),
—(| enable €7 BCD2 % hexto7seg HEX2
KEY[1] 5 7 .rst(~KEY[1]),
8 BCD3 hexto7seg |—~—— HEX3
4 7 en(~KEY[Q])
MAXlO_CLK1_50_> clock BCD4 .W HEX4 . ’
.count(count));

| Push button keys are low active, i.e. KEY[0] and KEY[1] are normally high and go low when pressed. |

Go to the lab4task2.sv window and set this file as your top-level module. Make sure that you
include all the relevant SystemVerilog component for this design using the command:

Project > Add/Remove Files in Project

and add counter.sv, hexto7seg.sv, and bin2bcd_16.sv from your library folder
<home>/mylib/.

Step 5: Use Processing > Analyze Current File check your newly created SystemVerilog files
are error free. This is the quickest way to find the basic syntax errors in your Verilog code.
Once all the simple errors are fixed, use Processing > Start Analysis and Elaboration to
perform fuller check of the “lab4task2.sv” to make sure that files are consistent and correct.

Lab 4 — Sequential circuits (v2.4 — 10 Nov 2025) 4

Step 6: Set clock frequency — Create a new file “lab4task2.sdc”* which should contain one

single line:

create clock -name "MAX10 CLK1l 50" -period 20.000ns [get ports {MAX10 CLK1l 50}]

With this, Quartus will know that the signal MAX10_CLK1_50 is a 50 MHz clock signal.

Step 7: Full Compilation — Click: Processing > Start Compilation. This will go through the
entire compilation process. Examine the Tasks window on the left and see all the steps being

taken to generate the final bit-stream.

Step 8: Maximum clock frequency — As part of the compilation
process, TimeQuest timing analyzer is used to predict various
timing information. In the “Compilation Report” window, you
should see a list of reports resulting from the compilation. Double-
click TimeQuest Timing Analyzer entry, and you should see a list
like the one shown here. Clicking on various entries under this will
show the various timing specifications. Answer the following
questions:

What are the predicted maximum frequencies for this circuit under
the highest and lowest temperatures? What are the other
interesting timing data that you can discover with these reports?
Why is the TimeQuest entry red, indicating that there may be a
problem?

Step 9: Testyour design on the DE10— program the DE10 and check
that your design works.

8 & Compilation Report - lab4task2

Table of Contents

ER Flow Summary

B Flow Settings

EH Flow Non-Default Global Settings
EH Flow Elapsed Time

FH Flow OS Summary

Flow Log
Analysis & Synthesis

Fitter

O Flow Messages

© Flow Suppressed Messages

v

Assembler
Timing Analyzer
EB Summary
ER Parallel Compilation
EH SDC File List
EH Clocks
Slow 1200mV 85C Model
FH Fmax Summary
FH Setup Summary
FR Hold Summary

Step 10: Examine the amount of FPGA resources being used by this 16-bit counter. Explain

the results.

1 Synopsis Delay Constraint (.sdc) files are standard formatted files introduced by Synopsis, a well-
known company specializing on IC design CAD tools. With this, a designer can specify various timing
constraints for the CAD tools the check against. Here we are only using this to define clock

frequency.

Lab 4 — Sequential circuits (v2.4 — 10 Nov 2025)

@ labatask2v ¥

e

Test-yourself Task — Cascade counter

You are now required to create something yourself. In the previous exercise, the 16-bit
counter is counting with a 50MHz clock. This is much too fast for us to see the counter
changing. This part of the experiment requires you use the counter to count the number of
millisecond elapsed. You would need to do this by having two counters cascaded with each
other (i.e. connected in series). The overall block diagram is shown below.

The clktick.sv circuit generates a 1 cycle high pulse every 50,000 clock cycles. Therefore, the
output signal tick provides one enable pulse every 1 millisecond. Exactly how clktick.sv
module works will be covered in Lecture?? Later. You can download this module from the
course webpage and use it as a component for now.

bin2bcd_16
KEY[O]_L CTR16 -
—(Cfreset / 7 HExo
KEY[I.]_I_ . BCDO 74 hexto7seg
— & enable =y . 7 HEX1
o 16 BCD1 [hexto7seg
~ ick [= / X 7
€7 BCD2 4 hexto7seg %HEXZ
=] =] 7
clktick b= S BCD3 —F hexto7seg HEX3
Y p !
BCD4 [—4—— hextorseg |—/— HEX4
[clock 4
MAX10_CLK1_50

Modify your circuit to implement this and test the new circuit on the DE10 board.

Task 3: Linear Feedback Shift Register (LFSR) and PRBS

You would have encountered a 4-bit LFSR in Lecture 7, which implements the primitive

polynomial: 1+ x3+x% The circuit is given as:

Z L]
CL c1> c1 —pc1 —>c1a

1 Q@ 7 Q2 5 -~ Q5 - Q4
1D 1D D D

XOR

You are now required to implement a 7-bit LFSR implementing the polynomial: 1 + X3 + X7).

Assuming that you initialize z shift register to 7°d1, work out manually the first 10 sequence
values of the output sequence. (The output sequence should be 127 long without repetition,
is known as a pseudo-random binary sequence or PRBS.)

Connect the shift register clock to KEY[1] and use the momentary key to cycle through the
first 10 or 20 value of the PRBS sequence. The “random” output should be displayed as two
hexadecimal digits.

Lab 4 — Sequential circuits (v2.4 — 10 Nov 2025) 6

